Ympyrä

Pinta-ala ja kehän pituus

Esimerkki 1

Ympyrän kehän pituus on 12. Määritä ympyrän pinta-ala.

Esimerkki 2

Ympyrän halkaisija on 20. Määritä ympyrän pinta-ala.

Esimerkki 3

Ympyrän kehän pituuteen lisätään yksi metri. Kuinka paljon ympyrän säde kasvaa?

Olkoon säde alussa r. Merkitään uutta sädettä r+x ja lisätään kehän pituuteen 1.

Säde kasvaa siis 0,16 metriä, eli 16 cm.

Ympyräsektori ja segmentti

Esimerkki 4

Määritä sektorin pinta-ala ja kaaren pituus.



Ympyrän säde on 2,5 ja keskuskulma 80°

Esimerkki 5

Laske segmentin pinta-ala ja piiri.


Segmentin pinta-ala saadaan, kun lasketaan sektorin ala ja vähennetään siitä tasakylkisen kolmion ala. Kolmion pinta-alan laskeminen kahden sivun ja näiden välisen kulman avulla on käyty läpi pinta-ala -osiossa.


Segmentin piiri koostuu tasakylkisen kolmion kannasta sekä sektorin kaaresta. Määritetään muodostuvan suorakulmaisen kolmion avulla haettu kanta. Merkitään haetun kannan puolikasta kirjaimella x.

(Keskuskolmion kannan voi laskea myös kosinilauseella)

Nyt voimme laskea segmentin piirin.

Ympyrän tangentti

Ympyrän tangentit sivuavat ympyrää yhdessä kohtaan ja ovat aina kohtisuorassa sädettä vastaan.

Esimerkki 6

Kuinka kaukana piste A on ympyrästä?

Pisteestä A piirretään jana ympyrän keskipisteeseen. Tämä jana on muodostuvan suorakulmaisen kolmion hypotenuusa. Kun siitä vähennetään säde, saadaan pisteen A etäisyys ympyrästä.

Esimerkki 7

Liisa-Petterin ilmapallo pääsi karkuun. Ilmapallon läpimitta oli 10 metriä. Kuinka kaukana pallo oli, kun se näkyi 18° kulmassa?

Hahmotellaan tilanne.

Ilmapallon säde on 5 ja muodostuvan suorakulmaisen kolmion sädettä vastassa olevan kulman suuruus 9° . Etäisyys pallosta on suorakulmaisen kolmion hypotenuusa vähennettynä ilmapallon säteellä.

Keskuskulma ja kehäkulma

Kehäkulma on puolet keskuskulmasta. Kaikki kehäkulmat, joista näkyy sama ympyrän kaari, ovat yhtäsuuria.

Oheisessa ympyrässä kulma 𝛂 on myös 35° . Kehäkulmia vastaava keskuskulma 𝛽 =70° .